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We derive exact results for close-packed dimers on the triangular kagome lattice �TKL�, formed by inserting
triangles into the triangles of the kagome lattice. Because the TKL is a nonbipartite lattice, dimer-dimer
correlations are short ranged so that the ground state at the Rokhsar-Kivelson �RK� point of the corresponding
quantum dimer model on the same lattice is a short-ranged spin liquid. Using the Pfaffian method, we derive
an exact form for the free energy, and we find that the entropy is 1

3 ln 2 per site, regardless of the weights of the
bonds. The occupation probability of every bond is 1

4 in the case of equal weights on every bond. Similar to the
case of lattices formed by corner-sharing triangles �such as the kagome and squagome lattices�, we find that the
dimer-dimer correlation function is identically zero beyond a certain �short� distance. We find in addition that
monomers are deconfined on the TKL, indicating that there is a short-ranged spin liquid phase at the RK point.
We also find exact results for the ground-state energy of the classical Heisenberg model. The ground state can
be ferromagnetic, ferrimagnetic, locally coplanar, or locally canted, depending on the couplings. From the
dimer model and the classical spin model, we derive upper bounds on the ground-state energy of the quantum
Heisenberg model on the TKL.
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I. INTRODUCTION

The nontrivial statistical mechanics problem of dimer
coverings of lattices, which may be used to model, e.g., the
adsorption of diatomic molecules onto a surface,1 experi-
enced a renaissance with the discovery of exact mappings to
Ising models.2,3 A second renaissance came with the search
for4,5 and discovery of6 a true spin liquid phase with decon-
fined spinons. In the latter case, the problem of classical
dimer coverings of a lattice illuminates the physics of the
corresponding quantum dimer model. At the Rokhsar-
Kivelson �RK� point5 of the quantum dimer model, the
ground states are an equal amplitude superposition of dimer
coverings within the same topological sector,6,7 and in fact
dimer correlations at this point correspond to the dimer cor-
relations of the classical dimer model.

Results on classical hard-core dimer models in two3 and
higher dimensions8 point to two classes of models, depend-
ing on the monomer-monomer correlation function, which is
defined as the ratio of the number of configurations available
with two test monomers inserted to the number of configu-
rations available with no monomers present. On bipartite lat-
tices �such as the square and honeycomb lattices�, monomers
are confined with power-law correlations.3,9 On nonbipartite
lattices �such as the triangular, kagome, and the triangular
kagome lattice �TKL� discussed here�, monomers can be ei-
ther confined or deconfined, and correlators exhibit exponen-
tial decay except at phase transitions.10–14 This implies that
while the RK point of the quantum dimer model is critical on
bipartite lattices, so that at T=0 a �critical� spin liquid exists
only at the RK point, in nonbipartite lattices, such as the
triangular lattice and lattices made of corner-sharing tri-
angles such as the kagome and squagome lattices, it has been
shown that the RK point corresponds to a disordered spin
liquid. Correspondingly, it was established in both of these
cases that there exist finite regions of parameter space where
the ground state is a gapped spin liquid with deconfined

spinons. Part of the interest in such states is the topological
order that accompanies such ground states, and hence such
states may be useful examples of the toric code. Interest also
stems from the original proposals that the doped spin liquid
phase leads to superconductivity.5,15

In this paper, we analyze the problem of classical close-
packed dimers on the TKL, a nonbipartite lattice expected to
display a spin liquid phase, as the first step in understanding
the RK point of the corresponding quantum dimer model.
The TKL, depicted in Fig. 1, has a physical analog in the
positions of Cu atoms in the materials Cu9X2�cpa�6 ·xH2O
�cpa=2-carboxypentonic acid, a derivative of ascorbic acid;

FIG. 1. �Color online� A dimer covering of a portion of the TKL.
The TKL can be derived from the triangular lattice by periodically
deleting seven out of every 16 lattice sites. This structure has two
different sublattices a �closed circles� and b �open circles�, which
correspond to small trimers and large trimers, respectively. Each
site has four nearest neighbors. The primitive unit cell contains 6 a
sites, 3 b sites, 6 a-a bonds, and 12 a-b bonds. Thick lines represent
dimers. A typical close-packed dimer covering is shown.
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X=F,Cl,Br�.16–18 We have previously studied Ising spins19

and XXZ/Ising spins20 on the TKL; this paper represents an
alternative approach to the problem. Using the well-known
Pfaffian method,3 we obtain exact solutions of close-packed
dimers on the TKL. We obtain an analytic form of the free
energy for arbitrary bond weights. The entropy is 1

3 ln 2 per
site, independent of the weights of the bonds, zaa and zab. We
find that the occupation probability of every bond is a con-
stant 1

4 in the absence of an orienting potential. The system
has only local correlations, in that the dimer-dimer correla-
tion function is exactly zero beyond two lattice constants,
much like the situation on lattices made from corner-sharing
triangles such as the kagome and squagome lattices.10 We
use exact methods to find the monomer-monomer correlation
function and show that monomers are deconfined on the
TKL. In addition, we solve for the ground states of the clas-
sical Heisenberg on this model. In addition to collinear
phases �ferromagnetic and ferrimagnetic�, we find a canted
ferrimagnetic phase which interpolates smoothly between the
two. We obtain a variational upper bound to the ground-state
energy of the TKL quantum Heisenberg antiferromagnet us-
ing closed-packed dimer picture.

II. MODEL, THERMODYNAMIC PROPERTIES, AND
CORRELATION FUNCTION

In this paper we consider the close-packed dimer model
on the TKL, a lattice which can be obtained by inserting
triangles inside of the triangles of the kagome lattice �see
Fig. 1�. The dimer generating function is defined as

Z = �
dimer coverings

�
�ij�

zij
nij

, �1�

where �ij� indicates a product over nearest-neighbor bonds,
zij is the weight on the bond joining site i and site j, and nij
is the number of dimers �either 0 or 1� on bond ij for the
dimer covering under consideration. The term “close-
packed” refers to the constraint that every lattice site must be
occupied by one dimer, that is, those vacancies are not

allowed. Therefore the number of sites Nsites is twice the
number of dimers Ndimers=��ij�nij. We allow for the possibil-
ity of
different weights z�=e−��� for six different types of bonds
�=1,2 ,3 ,4 ,5 ,6, as depicted in Fig. 2. Figure 1 shows an
example of a dimer covering.

Several properties of this model, including the free en-
ergy, entropy, and dimer-dimer correlation function, can be
calculated exactly using the well-known Pfaffian method.3

We begin by defining a Kasteleyn orientation3 �or Pfaffian
orientation� for this lattice, i.e., a pattern of arrows laid on
the bonds such that in going clockwise around any closed
loop with an even number of bonds, there is an odd number
of arrows pointing in the clockwise direction along the
bonds. For the TKL, we have found that it necessary to
double the unit cell in order to obtain a valid Kasteleyn
orientation.21 Such an orientation is shown in Fig. 3. The
doubled unit cell contains 18 sites.

The antisymmetric weighted adjacency matrix associated
with this orientation, Aij, is a Nsites�Nsites square matrix with
a “doubly Toeplitz” block structure. The generating function
of the dimer model is given by the Pfaffian of this matrix:
Z=Pf A=	det A. In the infinite-size limit, this approaches an
integral over the two-dimensional �2D� Brillouin zone,

f = lim
Nsites→�

F

Nsites
=

1

18



0

2� dkx

2�



0

2� dky

2�

1

2
ln�det M�kx,ky�� ,

�2�

where we have normalized the free energy by the tempera-
ture such that F� ln Z and where M�kx ,ky� is the 18�18
matrix below,

z1 z1
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FIG. 2. Our assignment of weights z� to bonds in the TKL.
Solid �open� circles represent a sites �b sites�. FIG. 3. �Color online� The arrows represent a Kasteleyn orien-

tation �Ref. 3� on the TKL. Solid �open� circles represent a �b�
sublattices. The shaded region represents the doubled unit cell.
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M =

⎝
⎜
⎜
⎜
⎛ 0 z1 z3 0 0 0 0 0 0 0 0 0 0 0 0 0

z3

u
−

z1

u

− z1 0 − z5 0 0 z1 − z6 0 0 0 0 0 0 0 0 0 0 0

− z3 z5 0 − vz3 0 0 z4 0 0 0 0 0 0 0 0 0 0 0

0 0
z3

v
0 − z2 0 −

z2

v
− z3 0 0 0 0 0 0 0 0 0 0

0 0 0 z2 0 z2 0 z4 z6 0 0 0 0 0 0 0 0 0

0 − z1 0 0 − z2 0 z2 0 z1 0 0 0 0 0 0 0 0 0

0 z6 − z4 vz2 0 − z2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 z3 − z4 0 0 0 − z5 − z3 0 0 0 0 0 0 0 0

0 0 0 0 − z6 − z1 0 z5 0 z1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 z3 − z1 0 z1 z3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − z1 0 − z5 0 0 z1 − z6 0 0

0 0 0 0 0 0 0 0 0 − z3 z5 0 − vz3 0 0 z4 0 0

0 0 0 0 0 0 0 0 0 0 0
z3

v
0 z2 0 −

z2

v
z3 0

0 0 0 0 0 0 0 0 0 0 0 0 − z2 0 z2 0 z4 z6

0 0 0 0 0 0 0 0 0 0 − z1 0 0 − z2 0 z2 0 z1

0 0 0 0 0 0 0 0 0 0 z6 − z4 vz2 0 − z2 0 0 0

− uz3 0 0 0 0 0 0 0 0 0 0 0 − z3 − z4 0 0 0 − z5

uz1 0 0 0 0 0 0 0 0 0 0 0 0 − z6 − z1 0 z5 0
⎠
⎟
⎟
⎟
⎞

, �3�

where, for brevity, we have written u=eikx and v=eiky. The
determinant of this matrix is independent of kx and ky,

det M�kx,ky� = 64z1
2z2

2z3
2�z1z4 + z2z5�2�z1z4 + z3z6�2

��z2z5 + z3z6�2. �4�

Taking the logarithm and integrating over the Brillouin zone
gives the free energy per doubled unit cell. Hence, the free
energy per site is

f =
1

18
ln�8z1z2z3�z1z4 + z2z5��z1z4 + z3z6��z2z5 + z3z6�� .

�5�

The occupation probability of each bond may be calculated
by differentiating the free energy with respect to the weight
of each bond. Let N� be the total number of dimers on z�

bonds �as defined in Fig. 2�, averaged over all configurations
of the system. Since Z=�configs��z�

N�, we have N�=z�
�F
�z�

. We

define the occupation probability of each � bond as p�=
N�

B�
,

where B� is the total number of type-� bonds on the lattice.
If Ncells is the number of primitive unit cells, then Nsites
=9Ncells, B1=B2=B3=4Ncells, and B4=B5=B6=2Ncells. The
results, normalized by the number of sites in the system, are

p1 =
1

8
1 +

z1z4

z1z4 + z3z6
+

z1z4

z1z4 + z2z5
� , �6�

p4 =
1

4
 z1z4

z1z4 + z3z6
+

z1z4

z1z4 + z2z5
� . �7�

Expressions for p2, p3, p5, and p6 follow by cyclic permuta-
tion of �1,2,3� simultaneously with permutation of �4,5,6�.
The entropy can be computed by the usual Legendre trans-
formation, S=F+��=1

6 ���N�.22

The behavior of the correlation functions can be deduced
in the same way as in Ref. 10. To find the dimer-dimer cor-
relation functions, the standard method is to first calculate
the “fermion” Green’s function, which is the inverse of ma-
trix A, Fourier transform it to real space, and use the result to
construct the dimer-dimer correlation functions. The inverse
of matrix A, G�kx ,ky�= �A�kx ,ky��−1, can be written as the
matrix of cofactors of A divided by the determinant of A.
Since det A is independent of kx and ky, the only dependence
on kx and ky enters through the cofactor matrix. Each cofac-
tor is at most a monomial in eikx and eiky. From the rules of
Fourier transformation it is easily seen that the real-space
Green’s function G�x ,y� is zero when �x��1 or �y��1 is
greater than a certain cutoff distance. Hence the dimer-dimer
correlation function will be zero beyond a distance of two
unit cells. This is true regardless of the values of the bond
weights depicted in Fig. 2. This extremely short-ranged be-
havior of the correlation function is similar to that for dimers
on the kagome lattice10 and also to the spin-spin correlation
for Ising spins in the frustrated parameter regime.19 It under-
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scores the special role played by kagomelike lattices �cf.
Refs. 10 and 23�.

Whereas quantum dimer models on bipartite lattices do
not support deconfined spinons, quantum dimer models on
nonbipartite lattices can have deconfined spinons. The con-
nection to classical dimer models is that at the RK point,
correlations in the quantum dimer model are the same as the
correlations of the corresponding classical dimer problem.
The only nonbipartite lattice for which deconfined spinons
have been rigorously demonstrated is the triangular lattice by
explicitly calculating the classical monomer-monomer corre-
lation function using Pfaffian methods.11 On the kagome lat-
tice, while no correspondingly rigorous calculation of the
monomer-monomer correlation function has yet been dem-
onstrated, there have been several indications that the
spinons in quantum dimer models on the kagome lattice are
deconfined �and, therefore, classical monomer-monomer cor-
relators are similarly deconfined� from, e.g., the energetics of
static spinon configurations,10 the behavior of the single-hole
spectral function24 and in the limit of easy-axis anisotropy.25

We have calculated the monomer-monomer correlation for
the kagome lattice dimer model using the Pfaffian approach
of Fisher and Stephenson,9 and we find that it is strictly
constant, with M�r�=1 /4 for any r�0.26 Because the trian-
gular kagome lattice dimer model maps to the kagome dimer
model �with an extra degeneracy of four per unit cell�, the
monomer-monomer correlation on the TKL is also M�r�
=1 /4 for monomers on any two b sites or for any combina-
tion of a and b sites at least three sites apart.

III. EFFECTS OF AN ORIENTING POTENTIAL

In the Cu9X2�cpa�6 ·xH2O materials,16–18 the a spins are
closer to each other than they are to the b spins so the ex-
change couplings satisfy �Jaa�� �Jab�. In the classical dimer
approximation described in Sec. V, this corresponds to un-
equal weights for dimers on ab bonds vs those on aa bonds,
�zaa�� �zab�. Aside from this intrinsic difference in bond
weights, it may also be possible to apply anisotropic me-
chanical strain to vary the lattice geometry �and, hence, the
exchange couplings and dimer weights� in different direc-
tions.

To obtain some insight into the behavior of the classical
dimer model under these conditions, we write z�=e−���,
where �=1 /T is the inverse temperature and �� is the poten-
tial energy for dimers on bond �. We use the following pa-
rametrization for the potential energy on each site:

�1 = �ab − 	, �2 = �3 = �ab, �8�

�4 = �aa − 	, �5 = �6 = �aa, �9�

where 	 is an orienting potential �i.e., an anisotropy param-
eter� which favors dimers in one direction. The bond occu-
pation probabilities and entropy are independent of the val-
ues of �ab and �aa and depend smoothly on �	 �see Fig. 4�,

p1 =
1

8
�2 + tanh �	� , �10�

p4 =
1

4
�1 + tanh �	� , �11�

p2 = p3 =
1

16
�4 − tanh �	� , �12�

p5 = p6 =
1

8
�2 − tanh �	� , �13�

s =
S

Nsites
=

1

18
�ln�64 cosh2 �	� − 2�	 tanh �	� . �14�

These results show that the TKL dimer model has neither a
deconfinement transition �as a function of �ab−�aa� nor a
Kasteleyn transition3 �as a function of 	�. It does, however,
have a Curie-type “polarizability” with respect to an orient-
ing potential. This is in contrast to the situation on the
kagome lattice,23 where the bond occupation probabilities do
not depend on the orienting potential.

IV. RESULTS FOR SYMMETRICAL CASE

In the absence of the orienting potential �i.e., 	=0�, the
expressions for the bond occupation probabilities and en-
tropy become very simple,

p� =
1

4
, � = 1,2,3,4,5,6, �15�

�4 �2 0 2 4
0.0
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s
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FIG. 4. �Color online� Bond occupation probabilities and en-
tropy per site as functions of the orienting field �	 defined in the
text.
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s =
1

3
ln 2. �16�

Note that these quantities are independent of the relative
bond weights zaa and zab. The comparison with other lattices
in Table I shows that the entropy per site for the TKL is the
same as that for the kagome lattice. Although the two lattices
are related, this is, in fact, a coincidence for the following
reason. The similarity can be seen by considering the number
of b spins per unit cell, which have a dimer that connects to
a different unit cell. Because there is an odd number of sites
per unit cell, this number must be odd, i.e., either one or
three. Since the b spins themselves form a kagome lattice,
the same is, in fact, true of the kagome lattice. The difference
is that for a given pattern of external dimers connecting to b
spins, there is no further degeneracy in the kagome case,
whereas for the TKL there are four different internal dimer
patterns corresponding to any given pattern of external
dimers connecting to the b spins. This means that the TKL
has a further fourfold degeneracy so that the kagome entropy
per unit cell of scell= ln 2 becomes an entropy per unit cell of
scell= ln 8=3 ln 2 in the TKL. Since there are nine spins per
unit cell in the TKL, this yields s= �1 /3�ln 2 per site.

The total numbers of dimers on a-a bonds and on b-b
bonds are

Naa =
1

3
Ndimers, �17�

Nab =
2

3
Ndimers, �18�

where Ndimers is the total number of dimers and Ndimers

= 1
2Nsites. �Of course, Naa=N4+N5+N6 and

Nab=N1+N2+N3.� Note that because there are twice as many
a-b bonds in the lattice as there are a-a bonds, this implies
that the dimer density is the same on every bond, regardless
of the weights of the bonds. Since the number of sites is
twice the number of dimers in the close-packed case, Nsites
=2Ndimers, there are on average 9/2 dimers per unit cell. One

third of those are on the a-a bonds or 3/2 per unit cell. Since
there are six a-a bonds per cell, there are �3 /2� /6=1 /4
dimers per a-a bond. A similar analysis shows that there are
1/4 dimers per a-b bond. In other words, there are 1/4 dimers
per bond, regardless of the relative weights zaa and zab and
regardless of whether it is an a-a or a-b bond. Under the
constraint of close packing, the dimer densities are set by
geometry rather than by energetics, similar to case of classi-
cal dimers on the kagome lattice.23,28–30

Our results for close-packed classical dimers on the TKL
are summarized in Table I along with known results for the
corresponding properties on the square, honeycomb, triangu-
lar, and kagome lattices. Notice that the kagome and TKL are
special in having simple closed-form expressions for the en-
tropies. In fact, the entropy per unit cell in each case is the
logarithm of an integer. On triangular lattice as well as on the
two bipartite lattices which are shown in the table �square
and honeycomb�, the entropy is not expressible as the loga-
rithm of an integer.

The square and honeycomb lattices, being bipartite, admit
a mapping to a solid-on-solid model31 and therefore have
power-law correlations for both the dimer-dimer correlations
and the monomer-monomer correlations. In the correspond-
ing quantum dimer models, these lattices do not support de-
confined spinons. As conjectured in Ref. 11, the nonbipartite
lattices have exponential �or faster� falloff of the dimer-
dimer correlations. In the triangular, kagome, and TKL lat-
tices, monomers are deconfined, which means that spinons
are deconfined in the corresponding quantum dimer model at
the RK point. In fact, Moessner and Sondhi6 showed that
there is a finite region of parameter space in which a stable
spin liquid phase is present on the triangular lattice.

V. BOUNDS ON THE GROUND-STATE ENERGY OF THE
QUANTUM HEISENBERG MODEL

It is thought that the materials Cu9X2�cpa�6 ·xH2O can be
described in terms of quantum S=1 /2 spins on the Cu atoms
coupled by superexchange interactions. Nearest-neighbor

TABLE I. Properties of close-packed dimer models on various lattices. Entropies are quoted per site.
“Local” means that the correlation function is exactly zero beyond a certain radius—it has “finite support.”
The triangular, kagome, and triangular kagome lattices have deconfined monomers. The honeycomb dimer
model not only has a finite dimer polarizability, but it has a Kasteleyn transition �Ref. 3� at 	=	c. The
polarizability describes the changes in bond occupation probabilities induced by an orienting potential 	.

Lattice Entropy Dimer correlation Monomer correlation Polarizability

Squarea 0.291 560 9 r−2 r−1/2 Finite

Honeycombb 0.1615 33 r−2 r−1/2 Kasteleyn transition

Triangularc 0.4286 e−r/0.6014 const+e−r/0.6014 Finite

Kagomed,e 1
3 ln 2=0.231 049 Local Deconfined 0

TKL 1
3 ln 2=0.231 049 Local Deconfined Finite

aReference 9.
bReference 27.
cReference 11.
dReference 10.
eReference 23.
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isotropic antiferromagnetic couplings between S=1 /2 spins
on a 2D lattice with sublattice structure can lead to Néel
order. For example, two-sublattice Néel order is favored on
the square lattice, whereas three-sublattice Néel order is fa-
vored on the triangular lattice.32 However, on the kagome
lattice and the TKL, quantum fluctuations are much more
severe, and there is a possibility that they may lead to alter-
native ground states �such as valence-bond liquids�.

A valence-bond state is a direct product of singlet pair
states. Using a fermionic representation for the spins,

�
�n�� = ��
�ij�

1
	2

�ci↑
† cj↓

† − ci↓
† cj↑

† �nij��vacuum� , �19�

where nij =0 or 1 is the number of valence bonds on bond ij,
just as in Eq. �1�.

Consider a quantum Hamiltonian with isotropic antiferro-
magnetic Heisenberg interactions,

Ĥ = − �
�ij�

JijŜi · Ŝ j , �20�

where Jij is negative. The expectation value of this Hamil-
tonian in a valence-bond state is

�
�n��JijŜi · Ŝ j�
�n�� = −
3

4�
�ij�

nij�Jij� . �21�

For close-packed dimers, the densities of valence bonds on
a-a and a-b bonds are given by Eqs. �17� and �18�. There-
fore, the total energy of the close-packed valence-bond “trial
wave function” is

EVB = −
3

4
�Naa�Jaa� + Nab�Jab�� �22�

=−
1

4
��Jaa� + 2�Jab��Ndimers �23�

=−
1

8
��Jaa� + 2�Jab��Nsites. �24�

This serves as an upper bound of the ground-state energy of
the quantum Heisenberg model. Of course, matrix elements
of the Hamiltonian which connect one dimer covering to
another can serve to lower the actual energy even further.

One may also consider a more dilute dimer state. For
large �Jaa�, one may expect dimers to preferentially occupy
a-a bonds so that hexamers with three a-b bonds are disal-
lowed. In such a trial dimer state, the associated energy is

Edilute = −
1

6
��Jaa� + �Jab��Nsites. �25�

As shown in Fig. 5, this upper bound to the ground-state
energy is lower than the others for large �Jaa�. If Jab is ferro-
magnetic and Jaa is still antiferromagnetic, we expect another
diluted dimer state, where dimers preferentially occupy a-a

bonds and other spins tend to be aligned �ferromagnetic
phase�. The corresponding energy is

Edilute+FM = − 1

6
�Jaa� +

1

9
�Jab��Nsites. �26�

Other bounds can be obtained by considering the classical
ground states of the Heisenberg model on the TKL �in which
the spins are three vectors of magnitude S=1 /2�. In the ma-
terials of interest, there is not yet consensus whether the
coupling Jab is ferromagnetic or antiferromagnetic. However,
the Hamiltonian of the classical Heisenberg model is invari-
ant under the transformation Sb→−Sb with Jab→−Jab so the
thermodynamics are independent of the sign of Jab.

First, let us consider classical Heisenberg spins on a
single hexamer. By direct minimization of the energy of a
single hexamer, we find that its classical ground state may be
collinear, coplanar, or canted. For Jaa�−�Jab� /2, the ground
state is collinear; the a spins are aligned with each other, the
b spins are aligned with each other, and the a and b spins are
parallel if Jab is ferromagnetic or antiparallel if Jab is antifer-
romagnetic. For Jaa�−�Jab�, the ground state is coplanar; the
a spins are at 120° to each other, the b spins are at 120° to
each other, and adjacent a and b spins are at 60° if Jab is
ferromagnetic or at 120° if Jab is antiferromagnetic. At inter-
mediate couplings, −�Jab��Jaa�−�Jab� /2, the ground state is
a canted state in which neither the a spins nor the b spins are
coplanar; rather, each sublattice is canted away from Néel
order, and each sublattice is canted away from the other. We
define the canting angles of the a and b spins, � and �, such
that �=�=0 in the collinear state �see Fig. 6�. The canting
angles evolve continuously from 0° �collinear� to 90° �copla-
nar� as a function of the coupling ratio Jaa / �Jab� �see Fig. 7�:
the classical ground state has two continuous transitions.

Now, we observe that each of these hexamer states can
tile the kagome lattice. Therefore, the ground-state energy of
each hexamer can be used to deduce the ground-state energy
of the entire system. In the collinear regime �Jaa�−�Jab� /2�,
the collinear hexamer states lead to a unique global spin
configuration �up to a global SU�2� rotation�, so there is
long-range ferromagnetic order �if Jab�0� or ferrimagnetic
order �if Jab�0�, and there is no macroscopic residual en-

�2.5 �2.0 �1.5 �1.0 �0.5 0.0
�0.7

�0.6

�0.5

�0.4

�0.3

�0.2

�0.1

Jaa��Jab�

E

Canted
Coplanar
Collinear
Dilute dimers
Close�packed dimers

FIG. 5. �Color online� Comparison of upper bounds on the
ground-state energy per site of the quantum Heisenberg model on
the TKL, obtained by considering various trial wave functions. In
the figure, we have set S=1 /2.
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tropy. The ground-state energy of the system is

Ecollinear =
1

6
��Jaa� − 2�Jab��Nsites. �27�

In the coplanar regime �Jaa�−�Jab��, there are infinitely
many ways to tile the TKL with coplanar hexamer configu-
rations �e.g., corresponding to three-sublattice or nine-
sublattice Néel order�. Furthermore, there are an infinite
number of zero modes �rotations of a few spins that cost zero
energy�. The ground-state energy is

Ecoplanar = −
1

12
��Jaa� + 2�Jab��Nsites. �28�

The physics is essentially the same as that of the classical
Heisenberg kagome model. For that model, the prevailing
point of view33–36 is that globally coplanar configurations are
selected at finite temperature via an order-by-disorder
mechanism, and the spin chiralities develop nematic order;
recently, Zhitomirsky37 argued that there is an additional oc-
tupolar ordering, which is, in fact, the true symmetry-
breaking order parameter.

The canted regime −�Jab��Jaa�−�Jab� /2 has the interest-
ing property that, in general, ���, so there is a net magnetic
moment on each hexamer. We have found that there are still
infinitely many ways to tile the TKL and that there are still
an infinite number of zero modes. It is possible that the zero
modes cause the directions of the local moment to vary from
place to place, destroying the long-range order with net mag-
netization; however, it is conceivable that the spin-
correlation length gradually increases toward infinity in go-
ing from the locally coplanar state to the collinear state. The
energy of the canted state is

Ecanted =
2

9
−

7�Jaa�
4

+
5Jab

2

8�Jaa�

− �Jab�	�1 − Jaa
2 /Jab

2 ��Jab
2 /Jaa

2 − 1��Nsites. �29�

Equations �27�–�29� are the exact ground-state energies
for the classical Heisenberg model on the TKL. They serve
as upper bounds on the ground-state energy for the quantum
Heisenberg model. Figure 5 shows these upper bounds, plot-
ted together with the upper bounds derived from dimer cov-
erings �Eqs. �24� and �25��, as explained earlier in this sec-
tion. Notice that the upper bound for the ground-state energy
set by considering dimer configurations beats the classical
ground states for Jaa large and negative �antiferromagnetic�.
In this highly frustrated regime, we expect that the true
ground state of the quantum Heisenberg model is signifi-
cantly modified by quantum fluctuations from that of the
classical case.

VI. CONCLUSIONS

In conclusion, we have studied the close-packed dimer
model on the triangular kagome lattice �TKL� using exact
analytic methods. We find that �in the absence of an orienting
potential� the entropy is s= 1

3 ln 2 per site, regardless of the
weights of the bonds, zaa and zab. The occupation probability
of every bond is p�= 1

4 . The dimer-dimer correlation function
vanishes identically beyond two lattice sites, faster than that
in the triangular lattice and similar to the falloff in the case of
the kagome lattice.10 The monomer-monomer correlation
function is M�r�=1 /4 for r greater than two lattice constants,
indicating that monomers are deconfined in this lattice. This
implies that the Rokhsar-Kivelson point5 of the correspond-
ing quantum dimer model is a short-ranged deconfined spin
liquid.

In addition, we find that the classical ground state of the
Heisenberg model on the TKL is ferromagnetic �if Jab is
ferromagnetic� or ferrimagnetic �if Jab is antiferromagnetic�
when the coupling between a spins on small trimers is large
enough compared to the coupling between a spins and b
spins, Jaa�−�Jab� /2. For Jaa�−�Jab�, the ground state of a
single hexamer is a coplanar state, and the physics reduces to
that of the classical Heisenberg kagome model.33–36 In be-
tween, there is a canted classical ground state in which the a
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0

10

20

30

40

50

60

70

80

90

Jaa��Jab �

Β �degrees�
Α �degrees�

FIG. 7. �Color online� Canting angles in the ground state of the
classical Heisenberg model on the TKL for as a function of cou-
pling ratio Ja-a / �Ja-b�. The thin line shows the canting angle � of the
a spins and the thick line shows the canting angle � of the b spins,
with respect to the collinear state, which is ferromagnetic or anti-
ferromagnetic depending on the sign of Ja-b.

β

α

FIG. 6. �Color online� Canted state of a hexamer of classical
Heisenberg spins on the TKL. � and � are the canting angles of the
a and b spins from the vertical axis. When �=�=0, this reduces to
a collinear state �which is ferromagnetic or antiferromagnetic de-
pending on the sign of Ja-b�. When �=�=� /2, it reduces instead to
a coplanar state, in which the spins are all at � /3 to each other.
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spins and b spins within a hexamer both cant away from the
coplanar state. Such a state does not arise in a simple model
of frustrated magnetism on the kagome lattice. This type of
canted ground state of the hexamer can tile the lattice, and
therefore it is the building block of the classical ground state
of the macroscopic system. There is a corresponding macro-
scopic degeneracy associated with the many ways in which
this local hexamer ground state can tile the lattice. Each hex-
amer possesses a local moment; it is not yet clear whether

the local magnetic moments from different hexamers cancel
out due to the presence of zero modes.
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